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Abstract

This paper addresses the problem of the construction of stable approximation schemes for the one-dimensional

linear Schr€oodinger equation set in an unbounded domain. After a study of the initial boundary-value problem in a

bounded domain with a transparent boundary condition, some unconditionally stable discretization schemes are de-

veloped for this kind of problem. The main difficulty is linked to the involvement of a fractional integral operator

defining the transparent operator. The proposed semi-discretization of this operator yields with a very different point of

view the one proposed by Yevick, Friese and Schmidt [J. Comput. Phys. 168 (2001) 433]. Two possible choices of

transparent boundary conditions based on the Dirichlet–Neumann (DN) and Neumann–Dirichlet (ND) operators are

presented. To preserve the stability of the fully discrete scheme, conform Galerkin finite element methods are employed

for the spatial discretization. Finally, some numerical tests are performed to study the respective accuracy of the dif-

ferent schemes.

� 2003 Elsevier Science B.V. All rights reserved.

1. Introduction

In this paper, we address the problem of the numerical approximation of a dispersive wave u solution to
the Schr€oodinger equation defined in an unbounded domain. More concretely, we consider the following
linear equation:

ðiot þ o2xÞu ¼ V ðx; tÞu; x 2 R; t > 0;

uðx; 0Þ ¼ u0ðxÞ;
ð1Þ
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where V designates a given potential, and for the sake of conciseness, we assume that u0 is a compactly
supported datum. This model equation arises in many practical domains of physical and technological

interest. For instance, this equation can be constructed from an approximation of the two-dimensional

Helmholtz equation in a preferred direction. Then, this is the so-called standard Parabolic Equations (PE)

[16].

The solution to Eq. (1) is defined on the whole domain X ¼ fðx; tÞ 2 R2 : t > 0g and must vanish for
x ! 	1. However, from a practical point of view, the infinite domain of propagation has to be truncated
to next use a well-adapted discretization scheme for Eq. (1). To this end, let us split the initial domain X
into three regions. We designate by Xi ¼ fðx; tÞ 2 R2 : xl6 x6 xr; t > 0g the interior domain where one
wishes to compute an approximate solution. To simplify the problem, we suppose that the support eXX of u0
is embedded in Xi. As recently noticed by Arnold and Ehrhardt [5], this restriction is not so cumbersome as

it a priori seems and may be avoided. Finally, two other complementary regions can be defined by

Xl ¼ fðx; tÞ 2 R2 : x < xl; t > 0g and Xr ¼ fðx; tÞ 2 R2 : x > xr; t > 0g for, respectively, the left and right
half-spaces (see Fig. 1).

The essential difficulty consists now to write a boundary condition such that no spurious reflection arises

at the fictive boundary C ¼ fxlg [ fxrg. In the case of a Schr€oodinger equation with a vanishing potential
(V ¼ 0), this non-reflecting boundary condition is given by the Dirichlet–Neumann (DN) pseudodifferential
operator on C

onuðx; tÞ þ
e�ip=4ffiffiffi

p
p ot

Z t

0

uðx; sÞffiffiffiffiffiffiffiffiffiffi
t � s

p ds ¼ 0 on C; t > 0

or yet

onuðx; tÞ þ e�ip=4D1=2t uðx; tÞ ¼ 0 on C; t > 0; ð2Þ

where D1=2t is the fractional derivative operator [13] of order 1/2 and n stands for the outwardly directed unit

normal vector to the computational bounded domain Xi. This condition may be directly derived in the one-

dimensional case by an explicit calculation based on the Laplace transform. Moreover, a generalization of

this condition can be developed in the two-dimensional case for a regular curved boundary C [1]. As a

consequence, the boundary-value problem to approximate is now given by

ðiot þ o2xÞu ¼ 0 in Xi � R;

onuþ e�ip=4D1=2t u ¼ 0 on C � R;

uðx; 0Þ ¼ u0:

The main difficulty of the numerical approximation is now linked to the presence in the boundary condition

of a convolution operator which can lead to a loss of stability of the interior scheme if an unsuitable

discretization is employed (see [6,17]).

Fig. 1. The computational domain Xi � R�þ and the left and right half-spaces.
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A first possible approach essentially developed by Arnold and Ehrhardt [3–5,10] consists in writing an

exact discrete transparent operator directly from the fully discretized Schr€oodinger equation by using, e.g.,
a Crank–Nicolson scheme. Hence, the resulting discrete system has the same property of unconditional

stability as the initial Crank–Nicolson scheme on the whole space. However, even if the approach leads

to accurate numerical results, it seems quite difficult to extend it to two-dimensional curved boundaries.

Moreover, the involvement of varying potentials is not straightforward. Finally, this approach requires

the use of a uniform discretization which can be a strong restriction in some applications. A second

approach introduced by Schmidt et al. [18–20] consists to choose a semi-discrete scheme of the
Schr€oodinger equation and to explicit the associated non-local transparent boundary condition. This
method has been widely developed and has proved to be efficient. Furthermore, the resulting scheme is

unconditionally stable. However, the possibility of its extension to two-dimensional surfaces not seems so

obvious. At last, a third direction (and also the older one) has been introduced by Mayfield [17] and next

by Baskakov and Popov [6] in the beginning of the nineties. This technique consists in applying a suitable

numerical quadrature formula to the continuous fractional operator defined by Eq. (2). Unfortunately,

the resulting schemes have proved to be stable under some suitable conditions. Recently, in [12], Friese

et al. have proposed some unconditionally stable and accurate discretization schemes for the transparent
operator. The interest of their approach is that it can be extended to the two-dimensional case since it is

constructed on the basis of the continuous problem. This is the approach considered in the present paper.

Finally, we can notice that other approaches can be used to truncate the computational domain as, e.g.,

by using some local artificial boundary conditions based on paraxial approximations of the transparent

operator [9,11,15,21] or also to adapt the method of B�eerenger Perfectly Matching Layer (PML) [7] to the
paraxial equation [8].

The plan of the paper is the following. In Section 2, we study the well-posedness of the Schr€oodinger
equation with a non-vanishing potential and the associated transparent condition. In Section 3, we give a
representation of the transparent boundary condition. The associated semi-discrete representation in the

time domain is next derived by using the Fourier transform and the principle of images. We consider two

possible choices of the transparent boundary condition which are a priori equivalent. They are based on the

involvement of the Dirichlet–Neumann (DN) or Neumann–Dirichlet (ND) pseudodifferential operator. In

particular, this approach allows us to make the connection between the proposed approximation of the

transparent boundary condition for the DN operator and the discretization previously described in Friese

et al. [12]. We next state the unconditionally stability of the resulting semi-discrete schemes. For the full

discretization, we develop a classical Galerkin finite element approximation. Finally Section 4 is devoted to
some numerical experiments showing the effectiveness of our approach. We also compare the two possible

choices of transparent boundary conditions with most well-known discretizations of the transparent

operator.

2. Study of the initial-boundary-value problem

Let us recall that for a vanishing potential the non-reflecting DN boundary condition is given by the
non-local pseudodifferential equation

onuðx; tÞ þ e�ip=4D1=2t uðx; tÞ ¼ 0 on C � R:

Its definition involves the Dirichlet–Neumann operator �e�ip=4D1=2t which is a convolution pseudodiffer-

ential operator. Another possible choice would be to rather consider the pseudoinverse operator of the
previous operator, the so-called Neumann–Dirichlet (ND) operator. They are a priori equivalent from a

continuous point of view. This operator is given by �eip=4I1=2t , where I1=2t designates the fractional integral

operator of order �1=2 given by
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I1=2t vðx; tÞ ¼ 1ffiffiffi
p

p
Z t

0

vðx; sÞffiffiffiffiffiffiffiffiffiffi
t � s

p ds;

for a distribution v. Then, the new non-reflecting ND boundary condition is now

uðx; tÞ þ eip=4I1=2t onuðx; tÞ ¼ 0 on C: ð3Þ

In a spirit of conciseness, let us now focus our study on the ND operator. Similar details may be directly

transposed to the DN operator. We now assume that V varies according to both the time and space

variables in the computational domain Xi � R. We moreover supposed that it only depends on the time
variable in the exterior domains Xl;r � R. Therefore, we have Vl;rðtÞ ¼ V ðx; tÞjXl;r . In the unbounded regions,
the potential may be eliminated by setting ul;r ¼ eiVl;rðtÞul;rðx; tÞ as a new unknown, for ðx; tÞ 2 Xl;r � R, with

ul;r ¼ ujXl;r on Xl;r � R. The dephasing function Vl;r is explicitly given by

Vl;rðtÞ ¼
Z t

0

Vl;rðsÞds 8t > 0:

In quantum mechanics, this modification is better known under the name of gauge change. As a conse-

quence the transparent ND condition can be rewritten as

ul;r þ eip=4I1=2t onul;r ¼ 0 on C:

Coming back to the initial unknown u, we deduce the transparent ND condition

ul;r þ eiðp=4�Vl;rðtÞÞI1=2t ðeiVl;rðtÞonul;rÞ ¼ 0 on C:

Coupled to the Schr€oodinger equation in Xi and to the initial condition on u, we can then determinate the
solution u for a problem with a potential. The assumption about the x independence of the potential in the
exterior regions is physically acceptable for homogeneous exterior media. Finally, let us remark that if V is
simply a constant, the reconstruction is straightforward. Indeed, functionVl;r can be computed by a direct

integration and only acts as a simple multiplication.

Remark. In the case where an incident wave uinc is prescribed at an endpoint of Xi, the transparent

boundary condition is applied to the wave u� uinc [3].
Hence the ND initial-boundary-value problem is given by

ðiot þ o2xÞuðx; tÞ ¼ V ðx; tÞuðx; tÞ in Xi;

ul;r þ eiðp=4�Vl;rðtÞÞI1=2t ðeiVl;rðtÞonul;rÞ ¼ 0 on C;

uðx; 0Þ ¼ u0:

ð4Þ

Classically, the density kukL2ðRÞ is decreasing for system (1) in the whole space if ImðV Þ < 0. In the case of
a bounded domain, this should also be the case for the L2ðXiÞ-norm of the approximate solution. More

precisely, the following result holds.

Theorem 1. Let us assume that potential V 2 CðRþ
t ; L

1ðCÞÞ satisfies: ImðV ðx; tÞÞ6 0, for x 2 Xi and 8tP 0.

Let uðx; tÞ be a solution to the initial-boundary-value problem (4). Then, u 2 CðRþ
t ;H

1ðXiÞÞ and fulfils the
following energy inequality

kuðtÞkL2ðXiÞ 6 ku0kL2ðXiÞ 8t > 0 and u0 2 H 1ðXiÞ:
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Remark. The uniqueness of the solution to the boundary-value problem directly results from the above

inequality. An identical result may be obtained when the DN condition is considered instead of the ND

condition. Finally, the assumption about the negativeness of the imaginary part of the potential is physi-

cally realistic. Indeed, in the framework of the PE methods, it reflects the fact that the wave propagates in a
dissipative medium, i.e., with a positive conductivity [16].

Proof. Let us multiply the Schr€oodinger equation by the test function �iu, where u designates the complex
conjugate of u. Integrating according to the space variable and next considering the real part of the re-
sulting expression, we get

Re

Z
Xi

ðotu
�

þ e�ip=2ðo2xu� V ðx; tÞuÞÞudx
�

¼ 1
2

d

dt

Z
Xi

juj2ðx; tÞdx�
Z

Xi

ImðV ðx; tÞÞjuj2ðx; tÞdx

þ
X
c¼l;r

Reðe�ip=2onuðxc; tÞuðxc; tÞÞ: ð5Þ

Now let us integrate this last relation on the interval ½0; t�. On one hand, we deduce the following identity
for the first quantity appearing in the right-hand side of Eq. (5)Z t

0

1

2

d

dt

Z
Xi

juj2ðx; sÞdxds ¼ kuk2L2ðXiÞðtÞ � ku0k2L2ðXiÞ:

On the other hand, the positiveness of the second quantity is clear from the assumption on the potential.

Let us replace now the trace of the solution on the boundary C by the expression obtained with the help of
the transparent condition (3). Then we get for any time t > 0

Re

Z t

0

eip=4eiVl;rðsÞoxuðxl;r; sÞI1=2s ðeiVl;rðsÞoxuðxl;r; sÞÞds
� �

: ð6Þ

Adaptating the arguments given by Arnold and Ehrhardt [5] for the operator eip=4D1=2s , we can prove that

the operator eip=4I1=2s is a positive operator in the sense of operators with memory. More precisely, we have

the following result.

Theorem 2. Let / 2 H�1=4ð0; tÞ a function extended to zero for all time s > t. Then, we get the inequality

Re
Z 1

0

eip=4/ðsÞI1=2s ð/ÞðsÞds
� �

P 0:

Finally, the application of this last theorem to the function / ¼ eiVl;rðsÞoxuðxl;r; sÞ provides the positiveness of
the quantities (6). This ends the proof. �

3. Construction and study of the discrete model

For the sake of conciseness, let us consider the following simplified boundary-value problem where we

choose only one fictive point at xr and a vanishing potential for the ND transparent operator

ðiot þ o2xÞu ¼ 0; for x < xr; t > 0;

uðxr; tÞ þ eip=4I1=2t onuðxr; tÞ ¼ 0;
uðx; 0Þ ¼ u0ðxÞ:
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Let us now construct a function v following the so-called image principle [14]. In the right unbounded
domain Xr, we set vðx; tÞ ¼ uðx; tÞjXr , where u is solution to the Schr€oodinger equation in the whole space.
In order to define a distribution on the entire space and to use a Green�s integral representation of the
solution, we extend v by reflection according to the point xr by setting vðx; tÞ ¼ uð2xr � x; tÞ, if x < xr. If
we assume that u0 is compactly supported in Xi, then vðx; 0Þ ¼ 0 on R. Moreover, in the sense of dis-

tributions, we have: otv ¼ otu. We can see that function v is continuous at xr whereas its spatial derivative
has a jump: o2xv ¼ o2xuþ ½oxuðxr; tÞ�dxr , where dxr designates the Dirac delta function at point xr and ½u� is
the jump of a distribution u across the fictive boundary fx ¼ xrg. Hence, function v satisfies the system of
equations

ðiot þ o2xÞv ¼ 2onuðxr; tÞdxr ; ðx; tÞ 2 R� R�þ;

vðx; 0Þ ¼ 0; x 2 R:
ð7Þ

Function v is then solution to a Schr€oodinger equation on R, with a vanishing initial datum and a measure

source term.

Now, let us define S as the Schr€oodinger group which satisfies SðtÞðf Þ ¼ Gðx; tÞ �x f , where G is the
Green�s kernel given by

Gðx; tÞ ¼ e�ip=4

2
ffiffiffi
p

p ffiffi
t

p exp

 
� jxj2

4it

!
: ð8Þ

Solution v to (7) can be written as

vðx; tÞ ¼ SðtÞvðx; 0Þ � 2i
Z t

0

Sðt � sÞonuðxr; sÞdxr ds:

By an explicit writing of the above formulation we get

vðx; tÞ ¼ SðtÞvðx; 0Þ � 2i
Z t

0

Z
y
Gðx� y; t � sÞonuðxr; sÞdxrðyÞdy ds

¼ SðtÞvðx; 0Þ � 2i
Z t

0

Gðx� xr; t � sÞonuðxr; sÞds: ð9Þ

Since we have vðx; 0Þ ¼ 0, we deduce that

vðxr; tÞ ¼ �eip=4I1=2t onuðxr; tÞ ¼ uðxr; tÞ:

3.1. Semi-discrete representation of the ND transparent boundary condition for the Crank–Nicolson scheme

The solution to the Cauchy system (7) directly gives the Dirichlet datum uðxr; tÞ at the boundary x ¼ xr
and leads to the expected boundary condition. Now we want to compute a solution v to (7). We are dealing
with a linear Schr€oodinger equation with a measure source term. Obviously, no explicit solution is a priori
known. Therefore, we seek a numerical approximate solution which allows to estimate the solution at ðxr; tÞ.
Concerning the time discretization of this equation, many possibilities can be used. Maybe the most

common scheme used to solve our initial problem is the Crank–Nicolson scheme. It is well-known for its

property of conservation of the L2-norm on the whole space. Moreover, this is a second-order scheme for
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the semi-discretization in time. This is also this choice which will be considered for the interior discreti-

zation of the Schr€oodinger equation and as a consequence, for solving problem (7). To describe the method,
let us introduce the following classical notations.

For a time step dt, we introduce the sequence of discretization points: tnþ1 ¼ ðnþ 1Þdt. Let us denote by
vn and un the respective approximations of v and u at time t ¼ tn. The Crank–Nicolson method applied to
system (7) consists in writing the following semi-discrete time discretization scheme

i
vnþ1 � vn

dt
þ o2x

vnþ1 þ vn

2

� �
¼ 2 onu

nþ1ðxrÞ þ onunðxrÞ
2

dxr ;

v0 ¼ u0:

ð10Þ

Let us now give the expression of vnþ1. To this end, we compute the spatial Fourier transform of the first
Eq. of system (10). We denote by bvnvn the partial Fourier transform of vn according to the space variable,
where n is the covariable of x. A straightforward calculation yields

dvnþ1vnþ1ðnÞ ¼ iþ 2p
2n2dt

i� 2p2n2dt
bvnvnðnÞ þ 2dt

i� 2p2n2dt
onunþ1ðxrÞ þ onunðxrÞ

2
e�2ipxrn:

Let us now introduce the symbols

AðnÞ ¼ iþ 2p
2n2dt

i� 2p2n2dt
and BðnÞ ¼ 1

i� 2p2n2dt
:

Under the previous notations, we have

dvnþ1vnþ1ðnÞ ¼ AðnÞ bvnvnðnÞ þ 2dtBðnÞ onunþ1ðxrÞ þ onunðxrÞ
2

e�2ipxrn:

A successive application of the above formula yields

dvnþ1vnþ1ðnÞ ¼ Anþ1ðnÞ bv0v0ðnÞ þ 2dtXn
k¼0

BðnÞAkðnÞ onu
nþ1�kðxrÞ þ onun�kðxrÞ

2
e�2ipxrn:

If we consider the first term appearing in the right-hand side of the above equation, we remark that it

corresponds via an inverse Fourier transform to a convolution term exactly as in the continuous case in Eq.

(9). If we now evaluate this expression at point xr and next we apply the inverse Fourier transform ac-

cording to n, we get the expression of vnþ1ðxrÞ

vnþ1ðxrÞ ¼ 2dt
Xn
k¼0

Z
R

BAkðnÞdn
 !

onunþ1�kðxrÞ þ onun�kðxrÞ
2

:

A simple calculation shows that the inverse Fourier transform of the symbols can be rewritten as

Ik ¼
Z
R

BAkðnÞdn ¼ � eip=4

p
ffiffiffiffiffiffiffi
2dt

p
Z
R

ð1� x2Þk

ð1þ x2Þkþ1
dx; k P 0:

In fact, each integral Ik may be explicitly computed

I0 ¼ � eip=4ffiffiffiffiffiffiffi
2dt

p ;
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I2pþ1 ¼ 0 if pP 1;

I2p ¼ � eip=4ffiffiffiffiffiffiffi
2dt

p
Yp
j¼1

2j� 1
2j

if pP 1:

Let us remark that we have the following recursive formula

I2p ¼
2p � 1
2p

I2ðp�1Þ:

Finally, we obtain the expression of vnþ1 for the Crank–Nicolson scheme

vnþ1ðxrÞ ¼ �eip=4
ffiffiffiffiffiffiffi
2dt

p Xn
k¼0

ck
onunþ1�kðxrÞ þ onun�kðxrÞ

2

� �
;

where the sequence of coefficients ðckÞk2N is given by the relations

ck ¼
1 if k ¼ 0;
0 if k ¼ 2p þ 1;Qp

j¼1
2j�1
2j ¼ 2p�1

2p c2ðp�1Þ if k ¼ 2p:

8<:
As a consequence, we have the following semi-discretization in time of the non-reflecting ND boundary

condition (3) for the Crank–Nicolson scheme

unþ1ðxrÞ þ eip=4
ffiffiffiffi
dt
2

r
onunþ1ðxrÞ ¼ �eip=4

ffiffiffiffi
dt
2

r
onunðxrÞ

� eip=4
ffiffiffiffiffiffiffi
2dt

p Xn
k¼2

ck
onunþ1�kðxrÞ þ onun�kðxrÞ

2

� �
: ð11Þ

This condition can also be rewritten in the following form

unþ1ðxrÞ ¼ �eip=4
ffiffiffiffiffiffiffi
2dt

p

2

Xnþ1
k¼0

akonunþ1�kðxrÞ;

setting

ða0; a1; . . .Þ ¼ 1; 1;
1

2
;
1

2
;
3

8
;
3

8
; . . .

� �
: ð12Þ

This is another derivation of the approximation obtained by Friese–Schmidt–Yevick [12] for the discreti-

zation of the transparent condition. The proof of the equivalence between these two relations is based on a

splitting of the formula (11) according to the parity of n and next using some reorderings.

3.2. Stability of the ND semi-discrete scheme

We have proved in Section 2 that the solution uðx; tÞ to (4) satisfies the following inequality

kuðtÞkL2ðXiÞ 6 ku0kL2ðXiÞ 8t > 0: ð13Þ
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So, we seek to extend this property to the semi-discrete version of the continuous problem by using the

Crank–Nicolson scheme and the associated representation of the ND transparent condition. Only the

approximation of the boundary condition can prevent the L2ðXiÞ-norm to decrease. The approach of

Mayfield [17] and Baskakov and Popov [6] is limited since this property is no longer fulfilled for a fixed

value of the time step dt. Their semi-discrete scheme is conditionally stable. The stability is preserved here
by using the semi-discrete representation of the ND transparent boundary condition. More precisely, we

have the following result.

Theorem 3. The semi-discrete Crank–Nicolson scheme for the Schr€oodinger equation associated with the
representation (11) of the ND transparent boundary condition is given by the system

i
unþ1 � un

dt
þ o2x

unþ1 þ un

2

� �
¼ 0 8x 2 Xi; ð14aÞ

unþ1ðxcÞ ¼ �eip=4
ffiffiffiffiffiffiffi
2dt

p

2

Xnþ1
k¼0

akonunþ1�kðxcÞ for c ¼ l; r; t > 0;

u0 ¼ u0 8x 2 Xi;

ð14Þ

where ðakÞk2N is the sequence given by relation (12). This scheme is unconditionally stable in the sense of the
k:kL2ðXiÞ-norm. Moreover, we have the energy inequality

kuNþ1kL2ðXiÞ < ku0kL2ðXiÞ 8N P 0: ð15Þ

Remark. The inequality (15) is the semi-discrete version of (13).

Before the statement of the proof of the above result, we make the assumption that u0ðxl;rÞ ¼
onu0ðxl;rÞ ¼ 0. This hypothesis is not restrictive since the support of the initial datum is embedded into the
computational domain. Then we have at each endpoint of the domain

Xn
k¼0

ckon
unþ1�k þ un�k

2

� �
¼ 1
2

Xnþ1
k¼0

ckonu
nþ1�k þ 1

2

Xn
k¼0

ckonu
n�k: ð16Þ

Let us introduce the discrete time convolution denoted by H and defined by

fnHgn ¼
Xn
k¼0

fkgn�k;

where f and g are two sequences defined by f ¼ ðfkÞk2N and g ¼ ðgkÞk2N. This allows us to rewrite relation
(16) under the form

Xn
k¼0

ckon
unþ1�k þ un�k

2

� �
¼ ðcnþ1Honunþ1Þ þ ðcnHonunÞ

2
:

Proof. Let us multiply Eq. (14a) by �iunþ1=2, integrate by parts on the domain Xi and take the imaginary

part of the resulting equation. Then, after some simplifications and summing on the indices n such that
06 n6N , we get
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1

2dt
ðkuNþ1k2L2ðXiÞ � ku0k2L2ðXiÞÞ þ

X
c¼l;r

Ac ¼ 0; ð17Þ

where we have set

Ac ¼
XN
n¼0

Ac
n ¼

XN
n¼0
Reð�ioxunþ1=2ðxcÞunþ1=2ðxcÞÞ; c ¼ l; r:

We now have to precise the sign of Ac
n. In order to determinate this sign, we proceed as Arnold and

Ehrhardt [5] by using the Z-transform of a signal ðfnÞn2N which is defined by

ZðfnÞ ¼
X1
n¼0

fnz�n ¼ bff ðzÞ; jzj > Rbff ;
where Rbff is the convergence radius of the series bff . Let us briefly recall some classical properties of this
discrete transform. We have the two shift relations

Zðfnþ1Þ ¼ zbff ðzÞ � zf0 and Zðfnþ1 	 fnÞ ¼ ðz	 1Þbff ðzÞ � zf0:

If, bff ðzÞ and bggðzÞ are defined for, respectively, jzj > Rbff and jzj > Rbgg, then, the Z-transform of the discrete
convolution operation fnHgn exists in the following sense

ZðfnHgnÞ ¼ bff ðzÞbggðzÞ; jzj > maxðRbff ;RbggÞ:
Finally, if Rbff Rbgg < 1, then ZðfngnÞ exists for jzj > Rbff Rbgg and we have

X1
n¼0

fngn ¼ ZðfngnÞðz ¼ 1Þ ¼
1

2p

Z 2p

0

bff ðreiuÞbgg eiu

r

� �
du; ð18Þ

where the integration path is the circle defined by Rbff < r < 1=Rbgg. Furthermore, if the two radii fulfil
Rbff < 1 and Rbgg < 1, then r ¼ 1 and (18) is satisfied for r ¼ 1.
Each term Ac

n involves the value of u
nþ1=2 at boundary points xc. This value is provided using the ND

transparent condition which is given by

unþ1ðxcÞ ¼ �eip=4
ffiffiffiffiffiffiffi
2dt

p

2
anþ1Honunþ1ðxcÞ:

To suitably use the Z-transform, we need to extend the finite sequence ðunÞ06 n6N to an infinite sequence

without modifying the quantities to estimate. To this end, we introduce the new sequence ðvNn Þn2N defined
by

vNn ¼ un if n6N þ 1;
ð�1ÞkuNþ1n if n ¼ N þ 1þ k; k > 0:

�
We can then define the complex-valued sequences ðf c

n Þn and ðgc
nÞn

f c
n ¼

ðanþ1HoxvNnþ1ðxcÞÞ þ ðanHoxvNn ðxcÞÞ
2

; c ¼ l; r; 06 n6N ;

and

166 X. Antoine, C. Besse / Journal of Computational Physics 188 (2003) 157–175



gc
n ¼ oxvNnþ1=2ðxcÞ; c ¼ l; r; 06 n6N :

An immediate calculation shows that we have

unþ1=2ðxcÞ ¼ �e�ip=4
ffiffiffiffiffiffiffi
2dt

p

2
f c
n and oxunþ1=2ðxcÞ ¼ gc

n if n6N :

Consequently, we have the new expression of Ac for n6N

Ac ¼ dt

ffiffiffiffiffiffiffi
2dt

p

2
Re eip=4

XN
n¼0

f c
n gc

n

 !
; c ¼ l; r:

Using results on Z-transform, we have the relation

bgc
ng
c
nðzÞ ¼

zþ 1
2

ZðoxvNn ðxcÞÞ �
z
2
oxvN0 ðxcÞ ¼

zþ 1
2

ZðoxvNn ðxcÞÞ;

since oxvN0 ðxcÞ ¼ 0. The above function is analytic on jzj > 0 since this is also the case for ZðoxvNn ðxcÞÞ.
Moreover, we have

cf c
nf
c
n ðzÞ ¼

zþ 1
2

ZðanÞZðoxvNn ðxcÞÞ:

From the definition of the sequence ðanÞn2N, we can assert that

ZðanÞ ¼
X1
n¼0

anz�n ¼ i
ffiffiffiffiffiffiffiffiffiffiffi
1þ z
1� z

r
;

which is analytic for jzj > 1. Consequently this proves that cf c
nf
c
n is also analytic on jzj > 1. As a consequence

the application of relation (18) (for r ¼ 1) implies that

X1
n¼0

f c
n gc

n ¼
X1
n¼0

zþ 1
2

���� ����2 ZðoxvNn ðxcÞÞ
�� ��2ZðanÞ ¼

1

2p

Z 2p

0

zþ 1
2

���� ����2
jz¼eiu

ZðoxvNn ðxcÞÞ
�� ��2

z¼eiuj ZðanÞjz¼eiudu;

where the integral is well-defined. After some simplifications we obtain the expression of Ac

Ac ¼
ffiffiffiffiffiffiffi
2dt

p

4p
Re eip=4

Z 2p

0

zþ 1
2

���� ����2 ZðoxvNn ðxcÞÞ
�� ��2 ffiffiffiffiffiffiffiffiffiffiffi

1þ z
1� z

r" #
jz¼eiu

du

0@ 1A:

Since the application z 7!ð1þ zÞ=ð1� zÞ is a homography from Dð0; 1Þ onto fReðzÞP 0g and which map
Cð0; 1Þ onto iR, we have

arg eip=4
ffiffiffiffiffiffiffiffiffiffiffi
1þ z
1� z

r" #
jz¼eiu

0@ 1A 2 0;
p
2

h i
:
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As a consequence, using (17), we concluded that the following inequality holds:

kuNþ1k2 < ku0k2 8N P 0:

This yields the L2ðXiÞ-stability of solution to (14), ending hence the proof. �

Remark. All the results developed in the case of a vanishing potential can be easily extended if a potential V
satisfying the assumptions given in Section 2 is involved.

3.3. Semi-discrete formulation using the DN transparent boundary condition

In all the preceding Sections, we have focus our study on the case where one considers the ND trans-

parent boundary condition. From a continuous point of view, it is equivalent to choose the DN or ND
operator. A natural question is how to suitably derive the semi-discrete approximation of the DN trans-

parent operator. In fact, its determination can be very easily stated by the previous analysis. Indeed, during

the proof of the stability result, we have shown that the application of a Z-transform to the ND trans-

parent condition leads to

ZðunðxcÞÞ ¼ �eip=4
ffiffiffiffiffiffiffi
2dt

p

2
ZðanHoxunðxcÞÞ:

Now using the convolution formula, we get

ZðanHoxunðxcÞÞ ¼ ZðanÞZðoxunðxcÞÞ:

Combining the two above formula straightforwardly yields the deconvolution of the ND transparent

operator

ZðoxunðxcÞÞ ¼
�e�ip=4

ffiffiffiffiffiffiffiffiffi
2=dt

p
ZðanÞ

ZðunðxcÞÞ:

As a consequence, since

1

ZðanÞ
¼ 1
i

ffiffiffiffiffiffiffiffiffiffiffi
1� z
1þ z

r
;

we deduce the semi-discrete form of the associated DN transparent boundary condition by using once again

the convolution formula and the inverse Z-transform of the signal

oxunðxcÞ ¼ �e�ip=4
ffiffiffiffi
2

dt

r Xn
k¼0

bku
n�kðxcÞ: ð19Þ

The sequence of coefficients ðbkÞk P 0 defining the new semi-discrete convolution operator are given by

bk ¼ ð�1Þkak; k 2 N: ð20Þ

Under the above notations, we can state the stability of the semi-discrete Crank–Nicolson scheme for the

semi-discretization (19) of the DN transparent boundary condition.

Theorem 4. The semi-discrete Crank–Nicolson scheme for the Schr€oodinger equation associated with the
representation (19) of the DN transparent boundary condition is given by the system
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i
unþ1 � un

dt
þ o2x

unþ1 þ un

2

� �
¼ 0 8x 2 Xi;

onunþ1ðxcÞ ¼ �e�ip=4
ffiffiffiffi
2

dt

r Xnþ1
k¼0

bku
nþ1�kðxcÞ for c ¼ l; r; t > 0;

u0 ¼ u0 8x 2 Xi;

where the set of coefficients ðbkÞk2N is given by relation (20). Then, this scheme is unconditionally stable in the
sense of the k � kL2ðXiÞ-norm. Moreover, we have the energy inequality

kuNþ1kL2ðXiÞ < ku0kL2ðXiÞ 8N P 0:

We do not detail here the proof of the Theorem which is very similar to the one presented for the ND

transparent boundary condition.

3.4. Finite element approximation

As seen above, the time semi-discrete schemes are unconditionally stable. This property is preserved at
the fully discrete level by considering a conform finite element subspace for the spatial discretization of the

variational formulation. The implementation of the DN transparent boundary condition does not present

any difficulty since it naturally appears in the weak formulation. The ND transparent condition is im-

plemented in the variational formulation as a Fourier–Robin-type boundary condition. More precisely, we

consider the following weak formulationZ
Xi

i
unþ1 � un

dt
udXi �

1

2

Z
Xi

oxunþ1=2oxudXi þ ½oxunþ1=2u�xlxr ¼ 0; ð21Þ

where we have define the mean value unþ1=2 by the relation

unþ1=2 ¼ unþ1 þ un

2
;

and where u is a sufficiently smooth function. From relation (11), the transparent condition allows us to

express the mean normal derivative at the endpoints of the computational domain by

onunþ1=2ðxrÞ ¼ � e
�ip=4ffiffiffiffiffiffiffi
2dt

p unþ1ðxrÞ �
Xn
k¼2

ck
onunþ1�kðxrÞ þ onun�kðxrÞ

2

� �
:

This expression is therefore considered as a Fourier–Robin boundary condition and is introduced in the

variational Eq. (21). The spatial discretization is based upon linear or quadratic Lagrange finite element for

a uniform grid of points ðxjÞ06 j6 J . Hence, we have: xj ¼ xl þ jdx for a step dx ¼ ðxr � xlÞ=J . We denote by
DN1 and DN2 the linear and quadratic finite element approximations for the DN transparent boundary

condition. The approximation of problem ND requires more attention. Indeed, the computation of normal

derivatives in Section 3.4 can lead to the loss of one order of convergence of the finite element method. To

highlight this phenomenon, we implement some finite element methods of order i on the interval ½x1; xJ�1�
and j on ½x0; x1� [ ½xJ�1; xJ �. These methods are designated by NDi;j.
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4. Numerical results

For the numerical purpose, we consider the linear Schr€oodinger equation with a vanishing potential. It is
well-known that an explicit exact solution is given by

uðx; tÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
i

�4t þ i

r
exp

�ix2 � k0xþ k20 t
�4t þ i

� �
:

This represents a Gaussian beam travelling with a wave number k0.
For the numerical simulations, we consider the computational domain Xi ¼� � 5; 5½ and a fixed fre-

quency k0 ¼ 8 (see Fig. 1).

Fig. 2. Representation of the evolution of the solution at different times t for the DN1 scheme.

Fig. 3. Contour of the log10ðjujÞ for the Baskakov–Popov method.
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The first numerical experiment given on Fig. 2 consists in the representation of the evolution of the

solution at different times t ¼ 0, t ¼ 0:15, t ¼ 0:30 and t ¼ 0:45 for the DN1 scheme. The spatial domain Xi

is discretized by using J ¼ 1024 fixed intervals. This choice is motivated by the necessity to reproduce the
oscillating behavior of the underlying solution by taking approximately 10 points per wavelength. More-

over we consider a time step dt ¼ 10�3.
In order to perform an exhaustive study of the proposed schemes, we compare the conditions ND1;1,

ND1;2, ND2;2, DN1 and DN2 to the classical schemes of Baskakov and Popov [6] and Arnold and Ehrhardt

[5]. To bring to the fore the unphysical numerical reflections link to the different methods, we plot the

Fig. 4. Contour of the log10ðjujÞ for the ND1;1 method.

Fig. 5. Contour of the log10ðjujÞ for the ND1;2 method.
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contour of log10ðjujÞ on Figs. 3–9. This curves are presented according to their increasing accuracy. As it can
be remarked on Fig. 3, the approach of Baskakov and Popov generates relatively important reflections with

an amplitude of the order of 10�1. The level of the reflected wave is sufficiently powerful to create a new

reflected wave at the left fictive boundary. Moreover, this scheme is known to be conditionally stable [17].
Using condition ND1;1 (cf. Fig. 4) lightly improves the approximation while keeping on being reflective.

As precised in the previous section, the order of the finite element is increased by one on ½x0; x1� [ ½xJ�1; xJ �.
The ND1;2 approximation leads to a visible improvement of the accuracy (cf. Fig. 5). This clearly indicates a

loss of one order in the approximation when the normal derivatives in formula (3.4) are evaluated. This order

Fig. 6. Contour of the log10ðjujÞ for the ND2;2 method.

Fig. 7. Contour of the log10ðjujÞ for the DN1 method.
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is recovered simply by increasing the order of both the right and left boundary finite elements. Thereby, only
two points are added to the initial mesh without increasing the computational cost of the ND1;1 scheme.

Moreover, no improvement arises when using NDi;i compared to NDi�1;i (cf. Fig. 6 where i ¼ 2).
We see on Fig. 7 that the use of the DN1 Dirichlet–Neumann operator yields really a much more ac-

curate solution. Indeed, the reflected wave is only of the order of 10�5. Therefore, the dispersive effects

begin to be possibly observed. To increase the accuracy of the method, we consider in Fig. 8, a quadratic

finite element approximation of the solution. This allows us to apparently avoid any spurious reflections. In

fact, some very small reflected waves, here invisible, of the magnitude 10�10�10�11 appear. Now, the effect of

Fig. 8. Contour of the log10ðjujÞ for the DN2 method.

Fig. 9. Contour of the log10ðjujÞ for the Arnold–Ehrhardt method.
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the dispersion is precisely reproduced. Let us remark that this method has approximately the same com-

putational cost as when using linear finite elements if we perform a mass lumping process. Since we are

working with finite elements, it is possible to consider some adaptative meshes to compute the solution.
We represent on Fig. 9, the contour of the solution obtained with the Arnold–Ehrhardt approach. We

observe no reflection in finite arithmetic precision. However, this approach has the drawback to fix the

order of the approximation scheme and to only consider a uniform mesh. This can be restrictive for some

practical applications.

Finally, we plot on Fig. 10 the remaining power in the computational domain, that is to say

log10ðjjujjL2ðXiÞÞ. Then, we remark that the approaches of Baskakov–Popov and ND1;1 do not accurately

reproduce the results obtained for the exact solution. In contrast, this is not the case of the other proposed

schemes and Arnold–Ehrhardt methods.

5. Conclusion

In this paper, we have given a different point of view on the derivation of the transparent boundary

conditions described in Friese–Schmidt–Yevick [12] for the one-dimensional Schr€oodinger equation. The
resulting fully discrete schemes based on finite element methods have proved to be unconditionally stable.

The extension to the two-dimensional framework using the transparent boundary conditions derived in [1]
for general curved boundaries is actually under progress [2]. The new approach is useful to be extended to

the two-dimensional case since it is a priori based on a direct approximation by a quadrature rule of the

continuous transparent operator. This not seems to be the case for the quasi-exact approach of Arnold and

Ehrhardt.
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